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Abstract

Traditional statistical modeling approaches are usually compared to machine learning methods using
large, retrospective datasets. Their relative performance across manual and automated methods, how
approaches to missing data, use of repeated measures across time, and split-sampling approaches,
when applied to small, prospectively collected datasets is unknown. We sought to address these
questions using a small ( ), prospectively collected data from patients admitted to an intensive
care unit. Therefore, we compared multivariable logistic regression, penalized logistic regression,
XGBoost, TPOT-1, TPOT-2, and Feat approaches to model tuning and selection. Each model received
three di�erent datasets with varying strategies for handling missing data, including prior imputation,
inclusion of missing �elds, and complete cases analysis. Each model variably received data from the
�rst and second day of inlusion in the cohort. Each model also received 80/20 and 50/50 split samples
or training and testing. We found that…

Introduction

A surge of interest in predictive modeling techniques has paralleled the increasing availability of large
data sets and open source software packages that allow nearly out-of-the-box model development.
The popularity of and potential for data science methods is particularly relevant to the health care
setting where decision making under uncertainty with large and varied data inputs are the daily norm.
However, many advanced modeling approaches have failed to yield evidence for their superiority over
traditional statistical methods.1,2 Comparisons between statistical and machine learning methods
have focused on relatively large datasets, or “big data.” However, prospectively collected, clinically rich
datasets of cohorts with relevant, patient-centered outcomes are more rare. With less noise in the
cohort selection and training labels, these prospective cohorts, albeit typically smaller due to the
expense of constructing them, o�er an opportunity to better isolate the e�ects of di�erent modeling
approaches.

However, small prospectively collected datasets present additional unique and unexplored questions.
First, how much data are wasted in using a split-sampling approach for internal validation?3 With an
extremely large dataset with millions of observations, the di�erence between a testing sample of 20%
or 25% may not matter. But if the data set has only a few hundred observations, a careful
consideration of su�cient sample size in the training set to �t a model is balanced against the need
for su�cient sample size in the test set to construct a clinically meaningful con�dence interval.
Second, the tradeo�s in approaches to missing data — common in clinical datasets — for such small
datasets used for prediction is unknown.4,5 The removal of complete cases is relatively costly given
the small number of observations while imputation may introduce or reinforce bias. Third, with a
small dataset, does incorporating repeated measures across a patient’s trajectory improve predictive
performance?6 Finally, all of these decisions could be guided by statistical expertise and clinical
insight into the problem at hand, or could be left to purely automated methods -— called automated
machine learning’’ to use the data itself to guide analytic choices around model selection and
imputation.7

Therefore, using a small, prospectively collected clinical dataset with six-month outcomes, we sought
to compare di�erent approaches to split sampling, handling of missing values, use of repeated
measures across time, and model selection across two long-term outcomes in patients with critical
illness.

Methods

N = Z



We compared the predictive performance of manual versus automated modeling strategies across
di�erent approaches for split-sampling, handling of missing data, and the use of repeated measures
over time. Individual investigators were responsible for implementing the manual (GW), automated
(TL), and automated with temporal features (WL) modeling approaches in a competition-style format.
Only one investigator (SB) had access to the outcomes in the testing dataset for evaluation until after
all models had been trained.

Population and Data Collection

We used a dataset derived from a prospective cohort study that was conducted from 2013 to 2014
among patients who spent at least three days in an intensive care unit (ICU).8 Among 303 patients in
the original cohort, 301 (99.3%) had su�cient identi�ers to be linked to their original chart in the
electronic health record (EHR) to query detailed clinical data. Quality of life and mortality after six-
month following discharge were determined in the original study using phone interviews and review
of the EHR.

Outcomes

For the primary analysis, each modeling approach was used to predict mortality after six months from
hospital discharge. In a secondary analysis, each modeling approach was used to predict the patient’s
quality of life, de�ned as a binary variable of whether the quality of life was at least as good as it was
prior to the ICU admission.

Clinical variables

Each model had access to the following variables for each patient: age (years), gender (man or
woman), race (XXX), diagnosis (XXX), ICU type (medical or non-medical), the presence of any Elixhauser
comorbidity categories (see Table XXX), and the Apache score on admission to the ICU. Other
variables recorded on the �rst and second days of the ICU admission included glucose (highest), white
blood cell count (WBC; highest), hematocrit (%; lowest), serum sodium (lowest), blood urea nitrogen
(highest), total bilirubin (highest), albumin (lowest), pH (lowest), PaCO2 (highest), PaO2 (lowest),
temperature (F; highest), heart rate (bpm; highest), respiratory rate (highest), systolic blood pressure
(mm Hg; lowest), Glasgow coma scale (GCS; lowest), urine output in the past 24 hours (mL), and the
fraction of inspired oxygen (FiO2; %).

Model Types

Manual machine learning

We used the scikit-learn software package in Python to train a traditional multivariable logistic
regression model, a penalized regression model (L1 and L2 penalties), and an XGBoost classi�cation
model.9 Because of the small sample sizes and relatively large number of features, each model was
trained using the �rst 20 principle components of each training dataset. In all cases, the same
decomposition derived in the training dataset was also used for the testing dataset. Tuning
parameters for the penalized regression and the XGBoost model were determined by grid search with
5-fold cross validation.

Automated machine learning

To test the performance of models developed through an automated machine learning (autoML)
approach, we used the Tree-based Pipeline Optimization Tool (TPOT).7 Designed for supervised
learning problems, TPOT is a user-friendly autoML library that recommends an optimal series of data
processing, feature engineering and classi�cation/regression operators. Using tree-based



representations of the pipelines, TPOT explores its search space with genetic programming to arrive
at a �nal pipeline that produces the most accurate predict the outcome in cross-validation. Recently, a
new option in TPOT called Template was developed to allow the user to de�ne a desired pipeline
structure for TPOT to optimize, trading pipeline �exibility for simplicity and reduced computation
time.10

In this study, we applied both the standard TPOT approach (TPOT Standard) and TPOT with the
Transformer → Classi�er template (TPOT Template) to predict the six-month outcomes and compare
their performance to the other methods. We designate 100 generations at maximum for each TPOT
run, each generation with the population size of 100.

Feat

To test the performance of an automated machine learning pipeline11 … TODO(Bill)

Missing Data

A manual chart review of the EHR con�rmed that none of the missing data elements were due to an
error in the dataset or in the database query, but rather were due to data not entered into the EHR.
We employed three di�erent approaches to handling missing data to understand their e�ects on
model performance in small clinical datasets and to test how they were related to performance using
di�erent modeling approaches.

First, we left all data as missing and allowed each modeling approach to deal with the data di�erently.
For the manually trained models, missingness indicator variables were generated for SBP, pH,
albumin, and FiO2, considering that their absence would be informative based on clinical experience
caring for patients in the ICU. The remaining missing data were imputed using a k-nearest neighbors
procedure. For the TPOT models, median imputation was used for all missing variables. For the Feat
models, … TODO(Bill).

Second, we pre-imputed all missing data so that all modeling approaches used the same imputed
dataset. Imputation in this case was performed with the mice  package in R using Bayesian linear
regression.12

Third, we performed a complete case analysis by entirely excluding the 8 most missing variables then
removing observations that had any missingness among the remaining variables.

Split Sampling

The data were divided into training and testing samples using two di�erent strategies. The �rst
strategy used 80% and 20% splits for training and testing, respectively. The second used 50% and 50%
splits. Split sampling for both strategies was performed with balanced strati�cation on ICU type
(medical and non-medical) and by quartile of the APACHE score. The observations were sampled such
that the 20% test set is a subset of the 50% test set.

Days of data

Numerous ICU mortality prediction models use data from the �rst 24 hours following admission.
Therefore, we aggregated available laboratory values and vital signs from the �rst 24 hours of the ICU
admission in which each patient was enrolled in the initial study.



However, the trajectory of a patient’s illness is sometimes not identi�able within the �rst 24 hours. It is
unknown to what degree such temporal data, if at all, improves predictions of long-term outcomes.
Therefore, we included an additional set of models with data from both the �rst and second 24-hour
periods of the ICU admission.

For the manually created models, the di�erence between the two time periods was calculated for SBP,
WBCs, FiO2, and UOP. These variables were chosen based on clinical experience as potentially
relevant for determining a patient’s trajectory. For TPOT and Feat, other features were …
TODO(Trang), TODO(Bill)

Model Performance

We evaluated the predictive performance of each model using the scaled Brier Score ( ) as a
measure that captures both discrimination and calibration.13 Over  predicted probabilities  for
some binary outcome , the Brier Score is de�ned as

However, a useful prediction model should do better than just guessing the baseline event rate as a
probability, and so scaling the Brier Score to this uninformed guess motivates using the scaled Brier
Score such that

A Scaled Brier Score of zero indicates that the model is equivalent to guessing the baseline event rate
for each observation, a negative score indicates that the model is worse than this, and a positive score
indicates that the model is better.

We generated con�dence intervals around each performance estimate by calculating the Scaled Brier
Score from 1,000 bootstrapped replicates of the predictions and observations for each model.
Di�erences in performance between models were calculated by estimating the boostrapped
di�erences using 1,000 replicates.

Computational resources

We calculated the time it took to train all models of each type using desktop hardware and utilizing
parallel processing when available.

Results

For the primary analysis, testing a six-month mortality prediction using one day of data, an 80/20 split,
and an individualized imputation strategy, the traditional logistic regression model yielded the highest
point estimate of performance, although did not di�er statistically (  for all comparisons;
Figure 1).
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Figure 1:  Scaled Brier Score of each modeling approach to predict six-month mortality in the hold-test test set using
one day of data, an individualized imputation strategy, and an 80/20 training/testing split. Abbreviations: MLR =
multivariable logistic regression, PLR = penalized logistic regression, TPOT = Tree-based Pipeline Optimization Tool.

Computational resources

The (Table 1).

Time required to train all models of each type.

Model type Time (seconds) Time (hours) Relative Time Hardware

MLR 2.00 <0.001 x1 MacBook Pro (2018), 2.9 GHz Intel Core i9

PLR 5.16 0.001 x2.6 MacBook Pro (2018), 2.9 GHz Intel Core i9

XGBoost 5,439.6 1.5 x2,720 MacBook Pro (2018), 2.9 GHz Intel Core i9

Feat 95,244.82 26.5 x47,613



Model type Time (seconds) Time (hours) Relative Time Hardware

TPOT - Template 184,444.6 51.2 x92,222

TPOT - Standard 258,331.3 71.8 x129,166

Discussion

These �ndings reinforce prior work demonstrating no bene�t in predictive performance to using
machine learning models compared to traditional regression approaches.14
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