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OBJECTIVES: The National Early Warning Score, Modified Early Warning 
Score, and quick Sepsis-related Organ Failure Assessment can predict 
clinical deterioration. These scores exhibit only moderate performance 
and are often evaluated using aggregated measures over time. A simu-
lated prospective validation strategy that assesses multiple predictions per 
patient-day would provide the best pragmatic evaluation. We developed a 
deep recurrent neural network deterioration model and conducted a simu-
lated prospective evaluation.

DESIGN: Retrospective cohort study.

SETTING: Four hospitals in Pennsylvania.

PATIENTS: Inpatient adults discharged between July 1, 2017, and June 
30, 2019.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: We trained a deep recur-
rent neural network and logistic regression model using data from elec-
tronic health records to predict hourly the 24-hour composite outcome of 
transfer to ICU or death. We analyzed 146,446 hospitalizations with 16.75 
million patient-hours. The hourly event rate was 1.6% (12,842 transfers or 
deaths, corresponding to 260,295 patient-hours within the predictive ho-
rizon). On a hold-out dataset, the deep recurrent neural network achieved 
an area under the precision-recall curve of 0.042 (95% CI, 0.04–0.043), 
comparable with logistic regression model (0.043; 95% CI 0.041 to 
0.045), and outperformed National Early Warning Score (0.034; 95% CI, 
0.032–0.035), Modified Early Warning Score (0.028; 95% CI, 0.027– 0.03),  
and quick Sepsis-related Organ Failure Assessment (0.021; 95% CI, 
0.021–0.022). For a fixed sensitivity of 50%, the deep recurrent neural 
network achieved a positive predictive value of 3.4% (95% CI, 3.4–3.5)  
and outperformed logistic regression model (3.1%; 95% CI 3.1–3.2), 
National Early Warning Score (2.0%; 95% CI, 2.0–2.0), Modified Early 
Warning Score (1.5%; 95% CI, 1.5–1.5), and quick Sepsis-related Organ 
Failure Assessment (1.5%; 95% CI, 1.5–1.5).

CONCLUSIONS: Commonly used early warning scores for clinical de-
compensation, along with a logistic regression model and a deep recurrent 
neural network model, show very poor performance characteristics when 
assessed using a simulated prospective validation. None of these models 
may be suitable for real-time deployment.
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Many early warning scores (EWSs) have been 
developed for use in hospital wards to guide 
evaluation for clinical deterioration. Such 

scoring systems could be useful for identifying patients 
who may benefit from more intensive care, monitoring 
progression of disease, and triaging resources for rapid 
response teams (1, 2). Commonly used EWSs such as 
the National EWS (NEWS), Modified EWS (MEWS), 
and quick Sepsis-related Organ Failure Assessment 
(qSOFA) are simple to compute. However, these scores 
have not demonstrated reliable improvements in pro-
cesses of care or clinical outcomes when deployed in 
practice (3–6). Lack of reported clinical benefit may be 
due, in part, to only moderate predictive performance 
of existing models. It is also possible to overinflate 
model performance with the use of evaluation strate-
gies that use information that would not be available to 
clinicians in real-time, for example, by retrospectively 
aggregating scores over a hospitalization, using only 
the worst score in a certain time period, computing 
scores at a predetermined time before clinical deteri-
oration is observed, or by ignoring realistic use cases 
of EWS for ongoing serial monitoring (4, 7, 8). On the 
other hand, the few reports of EWS performance that 
do account for the low event rate have yielded positive 
predictive values (PPVs) less than 5% in predicting 
sepsis and cardiac arrest (9, 10).

There are at least two potential strategies to over-
come these limitations in existing EWSs. First, conduct 
simulated prospective validation of a model to account 
for the pragmatic scenario in which a model is used to 
produce multiple predictions each patient-day, for ex-
ample, every hour. Second, use a modeling strategy to 
account for temporal trends in clinical variables. Most 
EWSs use data from a single point in time or manu-
ally determine temporal aggregations of vital signs and 
laboratory data (1, 11, 12). This approach requires a 
priori specification of the most useful aggregations, 
which are unknown; does not capture the different 
sampling rates of each variable, which are themselves 
often informative (13); and does not capture complex 
interactions between trends in variables. Modern elec-
tronic health records (EHRs) present an opportunity 
to use greater amounts of data and develop EWSs that 
are not limited to simple scoring systems. Several pre-
viously published EWSs have used machine learning 
techniques in the setting of the emergency department 
(14–16) where longitudinal data are less available and 

in the ICU (9, 17–19) where data are abundant, but less 
attention has been given to patients on hospital wards 
(20, 21). Some recent EWSs have employed deep re-
current neural network (DRNN) models that are spe-
cifically designed for temporal data in other settings 
(9, 22, 23).

We sought to overcome existing barriers to devel-
oping high-performing EWSs that capture time-varying 
patterns in data and are evaluated under realistic clinical 
conditions. Specifically, we developed a DRNN model 
that could learn relevant trends from EHR data to pre-
dict clinical deterioration among hospital ward patients 
and performed a simulated prospective validation of 
our model to compare against commonly used EWSs.

MATERIALS AND METHODS

Data Source

Data were acquired from the Clarity database that con-
tains all clinical data stored from the EHR for our in-
stitution (24).

Study Population

All patients at least 18 years old admitted for inpatient 
stay lasting at least 24 hours at one of four PennMedicine 
hospitals were included. Data captured while a patient 
was in a nonward setting (e.g., ICU, emergency depart-
ment, or operating room) were excluded, and patients 
discharged from an ICU were treated like new admis-
sions once they arrived on the floor. After removal of 
nonward data, any encounters less than or equal to 12 
hours were excluded to ensure times series had ade-
quate length for analysis. Data were divided into a 
model training dataset used for training DRNN model 
weights, representing 80% of encounters (discharge 
dates from July 1, 2017, to February 8, 2019), a model 
validation dataset used for hyperparameter tuning and 
model selection, representing 10% of encounters (dis-
charge dates from February 8, 2019 to April 19, 2019), 
and a testing dataset used for simulated prospective 
validation, representing the final 10% of encounters 
(discharge dates from April 19, 2019, to June 30, 2019).

Feature Generation

We extracted up to hour-level vital signs, laboratory 
studies, antibiotics usage, demographics, and other 
health process variables such as time and hospital unit 
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for the 6 hours preceding each prediction. A total of 61 
features were included in the DRNN model. Procedures 
used for processing outliers, imputing missing data, 
and feature engineering along with complete list of 
input variables are provided in Supplementary Digital 
Content 1 (http://links.lww.com/CCM/G272).

The primary outcome of clinical deterioration was 
defined as a composite of transfer to the ICU or in-
hospital mortality within 24 hours, similar to other 
EWSs (4, 11, 15, 25).

Model Development

The DRNN was trained using a two-step transfer 
learning approach as described in Supplementary 
Digital Content 2 (http://links.lww.com/CCM/G272) 
(26–28). Model variables for both the autoencoder and 
the final model were trained using the training dataset, 
whereas layer dimensions and regularization variables 
for both were chosen based on model performance in 
tuning grids using the model validation dataset (Figs. 
S5 and S6, Supplementary Digital Content 2, http://
links.lww.com/CCM/G272).

A binomial logistic regression model (Logit) without 
penalization was also trained to predict the composite 
outcome using the training dataset with the same 
inputs as the DRNN model, that is, 6-hour window of 
61 features flattened to a single vector, to serve as an 
additional comparator.

Simulated Prospective Validation

Predictions from the DRNN and Logit as well as NEWS, 
MEWS, and qSOFA scores were computed for each 
patient-hour in the testing dataset (5, 29, 30). Although 
qSOFA is not a general EWS, it is often deployed and 
evaluated as such (31). Therefore, we chose to include it 
here for comparison. Discrimination of the composite 
outcome for each model was assessed by the area under 
the precision-recall curve (AUPRC). Calibration for 
the DRNN and Logit models were assessed by visu-
alizing a calibration plot. Because the other EWSs do 
not produce predicted probabilities, a proxy for cali-
bration was assessed by plotting event rate across the 
range of scores. Additional performance metrics were 
computed, including area under the receiver oper-
ating characteristic (AUROC) curve, PPV for a fixed 
sensitivity of 50%, and the number needed to evaluate 
(NNE), a policy-level measure of the value of a predic-
tive model (32, 33).

Subgroup Analysis

A preplanned subgroup analysis was conducted by 
computing AUPRC for the DRNN, Logit, NEWS, 
MEWS, and qSOFA across several demographic and 
clinical groups. These subgroups were chosen 1) to un-
derstand how the model might perform in populations 
with a case-mix different from that reported here and 2)  
to better understand how such a model may differen-
tially affect clinical care in protected groups given the 
risk of reinforcing biases when deploying clinical pre-
diction models.

Model Usability

To assess DRNN usability, a patient encounter was 
selected for narrative analysis from the subset of DRNN 
true positives in the testing dataset in which the DRNN 
accurately predicted deterioration more reliably than 
other EWSs. Alert burden was simulated assuming 
model silencing for consecutive alerts. To get insight 
into the contribution of each feature to the model’s pre-
dictions, a measure of global feature importance was 
computed using a permutation-based algorithm (34).

95% CIs for performance metrics were produced via 
bootstrap with 1,000 replicates. Two-sided p value of 
less than 0.05 was considered statistically significant. All 
data analyses were performed using R statistical soft-
ware (35). We adhered to the transparent reporting of a 
multivariable prediction model for individual prognosis 
or diagnosis guidelines for best practices in develop-
ment and reporting of clinical prediction models (36). 
The final DRNN model object with instructions for use 
is available online for download at https://github.com/
weissman-laboratory/deterioration_drnn. This study 
was deemed exempt by the University of Pennsylvania’s 
Institutional Review Board (Protocol number 832918).

RESULTS

We analyzed 146,446 hospitalizations from 103,930 
unique patients and 16.75 million patient-hours 
(Supplementary Digital Content 3, http://links.lww.
com/CCM/G272). In total, there were 11,507 transfers 
to an ICU and 1,335 (0.9%) in-hospital deaths (Table 
1). Analyzed on a patient-hour basis with a 24-hour 
predictive time horizon, 260,295 of the 16.75 mil-
lion patient-hours fell within the predictive horizon, 
resulting in an event rate of 1.6% for the composite 
outcome.

http://links.lww.com/CCM/G272
http://links.lww.com/CCM/G272
http://links.lww.com/CCM/G272
http://links.lww.com/CCM/G272
https://github.com/weissman-laboratory/deterioration_drnn
https://github.com/weissman-laboratory/deterioration_drnn
http://links.lww.com/CCM/G272
http://links.lww.com/CCM/G272
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On the hold-out testing dataset, the DRNN 
achieved an AUPRC of 0.042 (95% CI, 0.04–0.043), 
comparable with Logit (0.043; 95% CI, 0.041–0.045), 
and outperforming NEWS (0.034; 95% CI, 0.032–
0.035), MEWS (0.028; 95% CI, 0.027–0.03), and 

qSOFA (0.021; 95% CI, 0.021–0.022) although all 
were below 0.05 (Fig. 1A). The calibration plot for the 
DRNN closely tracks the 45-degree line at low pre-
dicted probabilities and overestimates predictions at 
higher predicted probabilities (Fig. 1B).

TABLE 1. 
Data Characteristics

Variables Values

Observations  
Per Encounter,  
Median (IQR)

Encounters  
Without Any  
Values, n (%)

Hospitalizations, n 146,446   

Patient-hours, n 16,750,411   

Female gender, n (%) 86,621 (59.1)  0 (0)

Age (yr), median (IQR) 59 (37–71)  0 (0)

Race, n (%)   3,201 (2.1)

  White 88,372 (56.8)   

  Black 47,368 (30.5)   

  Asian 3,986 (2.6)   

  Other 3,519 (2.3)   

Hispanic, n (%) 5,949 (4.1)  3,201 (2.1)

Length of stay (d), median (IQR) 3.6 (2.4–6.2)  0 (0)

Hospital mortality, n (%) 1,335 (0.9)  0 (0)

Transfers to an ICU, n 11,507   

Patient-hour level variables

  Respiratory support, n (%) 880,222 (5.3)  0 (0)

  Heart rate (beats/min), median (IQR) 81 (72–92) 11 (6–24) 574 (0.4)

  Lactate (mmol/L), median (IQR) 1.2 (1.2–1.2) 0 (0–1) 113,251 (72.5)

  Platelet count (109/L), median (IQR) 207 (153–271) 80 (52–146) 3,413 (2.2)

  Total bilirubin (mg/dL), median (IQR) 0.5 (0.4–0.6) 43 (0–116) 68,502 (43.9)

  Glasgow Coma Scale, median (IQR) 15 (15–15) 46 (0–119) 65,410 (41.9)

  Creatinine (mg/dL), median (IQR) 0.87 (0.67–1.18) 77 (39–145) 19,903 (12.7)

  Sepsis-related Organ Failure  
Assessment score, median (IQR)

3 (1–5) 88 (57–151) 0 (0)

  Blood cultures drawn, n (%) 36,025 (0.2)  0 (0)

  Antibiotics usage, n (%) 544,964 (3.3)  0 (0)

IQR = interquartile range.
Patient-hour level values are reported after removal of outliers and imputation of missing data. For outlier ranges and imputation strate-
gies used, see Supplementary Digital Content 1 (http://links.lww.com/CCM/G272).

http://links.lww.com/CCM/G272


Copyright © 2021 by the Society of Critical Care Medicine and Wolters Kluwer Health, Inc. All Rights Reserved.

Clinical Investigation

Critical Care Medicine	 www.ccmjournal.org          5

For a fixed sensitivity of 50%, the DRNN achieved a 
PPV of 3.4% (95% CI, 3.4–3.5) corresponding to a NNE 
of 29, compared with Logit (PPV, 3.1%; 95% CI, 3.1–3.2; 
NNE, 32), NEWS (PPV, 2.0%; 95% CI, 2.0–2.0; NNE, 
50), MEWS (PPV, 1.5%; 95% CI, 1.5–1.5; NNE, 67), 
and qSOFA (PPV, 1.5%; 95% CI, 1.5–1.5; NNE, 67). The 

DRNN achieved the highest hourly AUROC of 0.72 (95% 
CI, 0.72–0.73), compared with Logit (0.71; 95% CI, 0.71–
0.71), NEWS (0.60; 95% CI, 0.60–0.60), MEWS (0.57; 
95% CI, 0.57–0.58), and qSOFA (0.55; 95% CI, 0.55–0.55) 
(Table 2;  and Figs. S9 and S10, Supplementary Digital 
Content 4, http://links.lww.com/CCM/G272).

Figure 1. A, Discrimination of deep recurrent neural network (DRNN) compared with commonly used early warning scores for 
predicting the 24-hr composite outcome with 95% CIs. Scores computed per hourly simulated prospective evaluation. Dashed gray 
line denotes performance of random classifier. B, Model calibration is assessed by sorting model predictions and comparing prediction 
score with observed fraction of composite outcome with 95% CIs. DRNN was divided into 10 equally spaced bins, whereas other early 
warning scores (EWSs) were divided into one bin for each point. Solid gray line for DRNN reflects ideal calibration. Logit = logistic 
regression model, MEWS = Modified EWS, NEWS = National EWS, qSOFA = quick Sepsis-related Organ Failure Assessment.

TABLE 2. 
Performance Metrics for Deep Recurrent Neural Network and Other Early Earning Scores

Performance Metrics

Deep  
Recurrent  

Neural  
Network

Logistic  
Model

National  
Early  

Warning  
Score

Modified  
Early  

Warning  
Score

Quick  
Sepsis-related  
Organ Failure  
Assessment

Area under  
precision-recall curve

0.042  
(0.040–0.043)

0.043  
(0.041–0.045)

0.034  
(0.032–0.035)

0.028  
(0.027–0.030)

0.021  
(0.021–0.022)

Positive predictive  
value

0.034  
(0.034–0.035)

0.031  
(0.031–0.032)

0.020  
(0.020–0.020)

0.015  
(0.015–0.015)

0.015  
(0.015–0.015)

Number needed  
to evaluate

29 (29–30) 32 (32–33) 50 (49–51) 67 (66–67) 67 (66–67)

Area under receiver  
operating  
characteristics curve

0.723  
(0.720–0.726)

0.711  
(0.708–0.714)

0.600  
(0.596–0.604)

0.574  
(0.570–0.577)

0.551  
(0.548–0.554)

Performance metrics reported with 95% CIs. Positive predictive value and number needed to evaluate were calculated for a fixed sensi-
tivity of 50%. 

http://links.lww.com/CCM/G272
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Subgroup Analysis

The DRNN achieved a higher AUPRC than NEWS, 
MEWS, and qSOFA for all subgroups except among 
patients suspected to have sepsis at some point dur-
ing their hospitalization (Fig. 2; and Table S14 and 
Fig. S15, Supplementary Digital Content 4, http://
links.lww.com/CCM/G272). The DRNN also shows 
improved discrimination compared with the total 
population among Black patients and patients who re-
ceived blood cultures at some point during their hospi-
talization and worse discrimination among older and 
female patients.

Model Usability

To demonstrate the usability of the DRNN as a real-
time alert, predictions using the DRNN, Logit, and 
other EWSs were computed for a single patient en-
counter (Patient Vignette, Supplemental Digital 
Content 4, http://links.lww.com/CCM/G272) accord-
ing to the information known at each point in time 
(Fig. 3). The large lead time predicted by the DRNN 
could have provided an opportunity to readdress goals 
of care with more prognostic information and/or to 

escalate ward-level care prior to ICU transfer and ulti-
mate rapid clinical deterioration.

Although the DRNN produced fewer new alerts per 
patient encounter than the other models at a sensitivity 
of 50%, it produced at least one alert for 58% of patient 
encounters, and the alert burden was distributed along 
the entire length of the encounter (Figs. S11 and S12, 
Supplemental Digital Content 4, http://links.lww.com/
CCM/G272).

Permutation-based feature importance for the 
DRNN demonstrated that three of the 10 most impor-
tant variables were derived from the respiratory rate 
(Fig. S13, Supplemental Digital Content 4, http://links.
lww.com/CCM/G272).

DISCUSSION

We found that a simulated prospective validation strategy 
to evaluate EWSs for clinical deterioration among ward 
patients consistently revealed poor performance across 
all model types. These findings also confirm prior system-
atic observations that currently published performance 
measures of such scores likely overestimate their utility in 
practice (8). These findings may explain, in part, why pro-
spective evaluations of EWS have failed to reliably dem-

onstrate improvements 
in clinical outcomes. The 
DRNN model learned pat-
terns of time-varying clin-
ical features and provides 
performance improvement 
over models with static fea-
tures, suggesting potential 
opportunities to leverage 
similar model architec-
tures for EWS applications; 
however, it too achieves 
poor performance and is 
unlikely to support real-
world deployment. Thus, 
our findings have several 
implications for the devel-
opment of predictive EWS 
systems.

First, all models in-
cluding the DRNN show 
performance that may be 
insufficient to support 

Figure 2. For each subgroup, area under the precision-recall curve (AUPRC) is plotted with 95% 
CIs for the deep recurrent neural network (DRNN), logistic regression model (Logit), National Early 
Warning Score (NEWS), Modified Early Warning Score (MEWS), and quick Sepsis-related Organ 
Failure Assessment (qSOFA). Blood Cultures = patients with blood cultures drawn at some point 
during their hospitalization; From ICU = patients transferred to floor from an ICU, n = number of 
hospitalizations, Outcome = prevalence of composite outcome, Sepsis Ddx = patients thought to 
have sepsis at some point during their hospitalization.

http://links.lww.com/CCM/G272
http://links.lww.com/CCM/G272
http://links.lww.com/CCM/G272
http://links.lww.com/CCM/G272
http://links.lww.com/CCM/G272
http://links.lww.com/CCM/G272
http://links.lww.com/CCM/G272
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real-time deployment in typical clinical workflows 
due to high false alert rate. High false alert rates lead 
to large amounts of additional work-up and wasted 
hospital resources. Alert burden for the DRNN is 
high and spreads along the entire encounter for both 
outcome positive and outcome negative patients, 
which would make real-time interpretation diffi-
cult and contribute to alert fatigue. In evaluating 
a discrete-time logistic model for predicting ICU 
transfer or hospital mortality, Kipnis et al (11) re-
port a PPV around 15% to achieve 50% sensitivity, 
but they report PPV based on episode-level predic-
tions rather than hourly predictions. These findings 
underscore the importance of refining models prior 

to deployment so as not to squander scarce resources 
on ineffective predictive interventions (9, 10).

Second, models that capture time-varying features 
are likely to outperform those that do not, supporting 
work by Churpek et al (12). In the simulated prospec-
tive validation, our DRNN significantly outperforms 
other EWSs in discrimination of the composite out-
come. Overall, the DRNN shows good calibration of 
predictions to event rate with overestimation at higher 
predicted probabilities. The DRNN also achieves 
higher AUROC, better PPV and NNE at fixed sen-
sitivity, and lower alert burden compared with other 
EWSs. Although recurrent neural networks have face 
validity for modeling temporal clinical data, the DRNN 

Figure 3. Deep recurrent neural network (DRNN) and logistic regression (Logit) model predictions and other early warning scores (EWS) 
for a single patient from the testing dataset, correlated with vital signs and important events represented by letters A–G. Solid gray lines 
mark thresholds that yield a sensitivity of 50%, whereas horizontal dashed gray lines mark commonly used thresholds for early warning 
scores for outreach to critical level care. CXR = chest radiograph, HR = heart rate, LUL = left upper lobe, MEWS = Modified Early 
Warning Score, NEWS = National Early Warning Score, qSOFA = quick Sepsis-related Organ Failure Assessment, RSV = respiratory 
syncytial virus, SBP = systolic blood pressure, Spo2 = oxygen saturation, Temp = temperature.
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only outperformed logistic regression at higher sensi-
tivities, and the added complexity of the DRNN should 
be weighed against availability of local resources. These 
findings are consistent with other studies showing that 
complex machine learning models provide no or only 
marginal improvements in performance over tradi-
tional regression methods (37, 38). Of note, all AUPRC 
were less than 0.05.

Third, prespecified subgroup analyses are necessary 
to understanding nuances of predictive model perfor-
mance to ensure efficacy and equity in deployment. The 
DRNN exhibited slightly worse discrimination among 
older and female patients and slightly better discrim-
ination among Black patients and those receiving 
blood cultures. Further work would be needed to bet-
ter characterize mechanisms for these differences and 
to consider additional data gathering or data generat-
ing mechanisms to alleviate inequitable performance 
prior to deployment (39). That NEWS, MEWS, and 
qSOFA showed better discrimination among patients 
with suspected sepsis compared with DRNN may be 
explained by the fact that these scores are more closely 
aligned with the Sepsis-2 definition that was used to 
identify sepsis in our cohort.

Finally, simulated prospective validation is essential 
prior to deployment of an EWS. Although this approach 
seemingly worsens relevant clinical and policy per-
formance metrics like PPV and NNE, it provides the 
best pragmatic assessment of a prediction model’s 
real-world performance for hospitalized patients (33). 
Researchers developing EWSs should evaluate their 
models using a simulated validation strategy that is as 
close in implementation to a prospective clinical trial 
as possible to provide realistic assessments of model 
performance prior to deployment.

This study should be interpreted in light of several 
limitations. First, although the data used to train and 
test the models came from multiple institutions, in-
cluding academic and community hospitals, all data 
came from one region. Because we wanted testing data 
to be prospective in time to the training data, testing 
data came from just a few months, which could limit 
generalizability. Second, the DRNN requires compi-
lation of data from multiple sources in real time for 
implementation, which may not be feasible in health 
systems without robust EHR systems and resource-
limited settings. Third, this study used NEWS rather 
than the updated NEWS2, which has alternative 

scoring for patients with documented hypercapnic 
respiratory failure (40). Because judgment of hyper-
capnic respiratory failure is challenging to make for an 
automated early warning system with limited access 
to patient’s historical information, NEWS was selected 
for evaluation, which may have lower specificity in that 
population (41). Fourth, the DRNN model architec-
ture was selected a priori, given both successful appli-
cation of such models in other uses and face validity 
for the modeling task at hand. However, it is possible 
that other model architectures that were not tested may 
provide a better fit and perhaps gains in performance. 
Finally, an individual alert from the DRNN model does 
not provide information about which feature(s) drove 
that prediction but rather serves as a general alert for 
closer examination.

Ultimately, clinicians and hospital policy-makers 
must decide whether the PPV, NNE, and calibration 
for these prediction models are acceptable prior to 
full implementation into clinical practice. They must 
weigh the benefits of earlier detection of clinical dete-
rioration against the risks and costs of false positives 
and education needed to change clinical practice.

CONCLUSIONS

Commonly used EWSs for clinical decompensation 
show very poor performance characteristics when 
assessed for real-time use in wards using a pragmatic, 
prospective simulated validation. A deep neural net-
work model that accounts for temporal trends in clin-
ical data may not support real-time deployment despite 
outperforming traditional models in this scenario.
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